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ABSTRACT 

The development of the industry of materials necessitates a good knowledge of the 
thermal parameters of these materials. This problem becomes very important when these 
materials must be heated. Two parameters are of great interest: the thermal conductivity and 
specific heat. Moreover, the information on the variation of these parameters with tempera- 
ture is very often in great demand. A method using a calorimeter working under transient 
conditions is studied in a mathematical way. The technique involves a recurrent two-step 
process: the calorimeter is heated at a constant heating rate during the first step, and then the 
temperature is stabilized during the second step. An increase of a few degrees may be chosen 
for each step. The mathematical treatment is carried out by considering the heat flux emitted 
through the calorimeter-holder interface, in the case where both the holder and calorimeter 
are cylindrical in shape. 

INTRODUCTION 

The rate at which heat can pass intoand out of materials, especially 
polymers, is a measure of how efficiently it can be transferred. Therefore, it 
affects the design of processing machinery and controls the speed of many 
mixing, extruding and moulding operations. Heating and cooling are essen- 
tial processes in the forming of most rubber and plastic articles. For 
instance, the control of heat is exceedingly important for costs and the 
quality of rubber vulcanizates. In the curing of rubber, there are two main 
requirements: on the one hand, the heating and curing cycle must be kept as 
short as possible for efficiency, and on the other hand, the temperature 
gradients in the article must be minimized for uniformity in the finished 
products. A simple compromise is obtained by trial and error leading to 
crude rule-of-thumb methods. The best compromise is attained by calculat- 
ing the temperature distribution, and these results depend largely on a good 
knowledge of the appropriate thermal properties at the relevant temperature. 
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Values of the thermal conductivity and heat capacity are needed for 
heat-flow calculations, but hardly any thermal diffusivity exists, and the 
reported values of thermal conductivity show very large scatter [l] as shown, 
for instance, for poiystyrene and natural rubber. In fact not only do the 
values differ at some temperatures by more than loo%, and in the case of 
rubber by almost 300%, but also different trends are indicated throughout 
the temperature range [2]. It is clear that errors of this size cannot by due to 
variations in the sample, and they give some indication of the experimental 
difficulties associated with thermal property measurements. This lack of 
data is surprising in view of the importance of these basic material proper- 
ties. 

Firstly, it needs to be stressed that the thermal properties are very 
temperature dependent. For instance, it has been shown that the thermal 
conductivity of black-loaded natural rubber compounds decreases with 
increasing temperature, this decrease being as much as 45% over the temper- 
ature range from ambient to 2OOOC [3]. Secondly, carbon black increases 
thermal conductivity in all elastomers, and generally additives modify that 
value for all materials. There is usually a break in the thermal 
conductivity-temperature curves at Tg (the temperature of glass transition) 
for amorphous polymers. Moreover, cross-linking and the ~lcan~ation 
additives usually do somewhat increase the thermal conductivity of a poly- 
mer [4]. 

Although various methods for the measurement of thermal conductivity 
are well documented in the literature, including the ASTM procedure [5], 
there remains a demand for rapid and versatile techniques for routine 
research with less stringent temperature equilibration and instrument oper- 
ation. Some earlier attempts to utilize differential scanning calorimetry 
(DSC) have been made [6,7]. In contrast to the ASTM procedures, which 
require large samples and hours or days for one determination, the DSC 
procedure requires a relatively small amount of materials and takes only a 
few minutes for each deter~nation of thermal conductivity. A further 
advantage of this last technique is that the specific heat can be readily 
determined by the same unit, allowing the calculation of the thermal 
diffusivity if the specific gravity is known. 

Although a dynamic method would have the advantage of readings at 
different temperatures from one experiment giving thermal conductivity as a 
function of temperature, the isothermal method was usually adopted for its 
simplicity of operation and better reproducibility [6,7]. 

The purpose of this work is to show by means of a mathematical study 
that measurements can be simultaneously obtained for thermal conductivity 
and specific heat by using a transient method for calorimetry in scanning 
mode. The method of heating is a recurrent two-step process with the 
following cycle: in the first step the temperature is increased at a constant 
rate for a definite time, and in the second step the temperature is kept 
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constant for another definite period of time. The time necessary for these 
steps is attained when the heat flux emitted through the calorimeter reaches 
equilibrium, either with an endothermic value in the first step or a zero value 
for the second step. 

The experimental study is made by considering a rather large sample, 
cylindrical in shape, because of the interest we have found previously in 
these samples [8-91 for various materials as rubber of thermosets. 

THEORETICAL 

Assumptions 

The following assumptions are made. 
(i) The sample is cylindrical in shape. 
(ii) The contact between the sample and the mould of the calorimeter is 

supposed to be perfect, without an air layer. 
(iii) The hea t fl ux is measured at the middle of the length of the sample so 

that the heat flux is radial only. 
(iv) The thickness of the holder is neglected with regard to the radius of 

the sample. 
(v) The calorimeter is treated according to the following two-step process: 

(a) the calorimeter is heated with a constant rate for a definite time, allowing 
the heat flux to become constant; (b) the temperature of the calorimeter is 
stabilized at constant temperature for another definite time necessary for the 
heat flux to reach the zero value. 

By considering the cylindrical cross-section of the sample, the heat 
transfer is radial and the increase in temperature at the position Y is 

i3T 1 la _--- 
at- pC r ar ( 1 

AaT 
r ar 

and becomes 

when the thermal conductivity X is constant (temperature independent). The 
diffusivity LY is assumed to be constant within the range of temperature. 

Study of the heating stage 

The following function of r and t: 

T=&(r’--R’)+bt+c (2) 

where b and c are constant, is a solution of eqn. (la), and the initial 



22 

condition and boundary conditions during the heating of the sample are 
respectively 

T(Y,O) = $-(?- P) f c initial condition (3) 

T(R,t)=bt+c boundary condition (4) 

The profile of temperature within the cross-section is parabolic, and this 
curve is translated when the time is increased. 

The heat flux can be written as 

(5) 

The other solutions U of eqns. (la) and (4) are obtained by adding 
together the particular solution (2) and an arbitrary solution of eqn. (la) 
having zero value at the interface. 

U(r,O) =f(r) with f(R) = 0 and f’(0) = 0 

U(R,t) = 0 

This classical problem has been solved [lo]: 

Pa) 

(4a) 

u= f p exp _fj2 

n=l n ( R2 0+&b) 
where 

(6) 

j,,, being the yt th positive root of the Bessel function Jo. 
All solutions of the system of eqn. (la) and the boundary conditions 

shown in eqn. (4) are in the form 

V=T+U (8) 

The initial condition of V then becomes 

v(r,o) =f(r) + -&(r2 - R2) + c ( w 
Therefore the function f(r) must be as follows: 

f(r) = $--(R2 - r2) 

when the initial temperature in the sample is the same as the calorimeter 
temperature. 

Then, for & we have 
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with 

1 1 

yn = J:(A,J 0 J 41 - u’>Jo(tio,,> du 

where u = x/R. 
The function T verifying T( r,O) = c for each r is 

(9) 

The flux emitted through the calorimeter-sample interface becomes 

This flux function may be written in the following form: 

which has a limit for infinite time: 

F= +bRpC 

The rate of heat flow into a truncated cylinder of unit height is 

(11) 

D = 2rRF (12) 

This function C#I is a purely mathematical function which is always the same 
whatever the values of the parameters. We shall study it in more detail later. 

Study of the isothermal stage 

During the heating stage with the constant heating rate b, the function U 
decreases down to zero, and the profile of temperature tends to 

T(r,t)-bt-c=$-(r2-R2) (13) 

Then at time t,, the external temperature is stabilized at its final value: 
Tl = T( R, tl) = bt, + c. Thus, this final profile becomes the initial profile for 
the isothermal stage. The temperature in the cylinder increases as described 
by the function - U, opposite to the previous function: 

T(r,t) = Tl - U(r,t - tl) (14) 

The flux emitted through the lateral surface of the cylinder becomes 

F= bRpC 
2 (15) 

with the same function + defined above. 
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Study of the function $I and its reciprocal function +- I 

Let 

bRpC 
FL= limF=F 

P-+00 

The dimensionless variables 6’ and y are linked by the relation 

Y =GW 

where C#J has been shown above. The value y of the function + increases 
from 0 to 1 when 8 is increased from 0 to + 00. 

From eqn. (lo), $ is expressed explicitly by its development in series by 
means of Bessel functions J, and J1: 

G(e) = 1 + 5 ~,j,,,Jd(&) ev(-G,,) (16) 
n=l 

In order to obtain its numerical values, it is easier to choose 

R=l pC=l x=1 b=2 c=o 

and solve numerically the system 

(17) 

For the system (17), we have used the explicit numerical method with finite 
differences, which we have explained previously [8,11,12]. The radius is 
divided into N equal parts, the increment of abscissa is Ax = l/N, the 
increment of time is At, and T(n,i) is the temperature at abscissa nAx and 
time iAt. 

M = Ax2/cYAt is a dimensionless number, then 

T(n+l,i)+(M_2)T(n,i) 

l<n<N-1 
(19) 

T(O,i + 1) = T(O,i) + (T(l,i) - T(O,i))G 

T( N,i) = 2iAt ! 

The coefficient of T( n,i) and T(O,i) must be positive for calculation 
stability, and then M > 4. 
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TABLE 1 

Calculated values of the function 9 

Function 9 

e yx100 e yx100 e yx100 e yx100 

0.001 7.01 0.010 21.54 0.100 60.58 0.550 97.13 
0.002 9.87 0.020 29.85 0.150 70.81 
0.003 12.04 0.030 35.97 0.200 78.21 
0.004 13.86 0.040 40.96 0.250 83.70 
0.005 15.44 0.050 45.21 0.300 87.80 
0.006 16.86 0.060 48.94 0.350 90.86 
0.007 18.16 0.070 52.27 0.400 93.16 
0.008 19.36 0.080 55.29 0.450 94.88 
0.009 20.48 0.090 58.05 0.500 96.16 

0.600 97.85 
0.650 98.39 
0.700 98.79 
0.750 99.10 
0.800 99.32 
0.850 99.49 
0.900 99.62 
0.950 99.72 
1.000 99.79 

TABLE 2 

Calculated values of the reciprocal function of + 

Reciprocal function of r#~ 

yx100 e yx100 e 

5.00 0.00051 40.00 0.03794 
10.00 0.00205 45.00 0.04947 
15.00 0.00471 50.00 0.06306 
20.00 0.00856 55.00 0.07900 
25.00 0.01369 60.00 0.09764 
30.00 0.02021 65.00 0.11950 

35.00 0.02825 70.00 0.14535 
75.00 0.17639 

yx100 e 

80.00 0.21472 
85.00 0.26435 
90.00 0.33442 
95.00 0.45427 
96.00 0.49285 
97.00 0.54259 
98.00 0.61270 
99.00 0.73256 

I ” , 0’ , , , 01 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Fig. 1. A plot of y vs. 8. 
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For eqn. (18) we have used the parabolic approximation 

E(l,r) = [W(l,t) -4T(l- $ t) + T(1 - +, tj]; (20) 

In this case, this parabolic approximation is recommended, because the 
profile of temperature within the radius is developed from a straight line to 
an arc of a parabola. 

By using N = 200 and At = 5 X 10m6, the function + and its reciprocal, 
c#-‘, have been calculated as shown in Tables 1 and 2 and in Fig. 1. 

Application for the determination of the thermal parameters 

During the interval of heating, the flux F per unit area is registered 
experimentally as a function of time. The asymptotic value for the flux FL 
gives the specific heat per unit volume of the sample: 

From the relative heat flux y measured at various times, it is easy to 
obtain from Table 2 the value of 0 (where 0 = +- ‘( JJ)) and then the thermal 
diffusivity and conductivity: 

e a=-p 
t 

X = pCR2$ 

Several facts of interest are worth pointing out. 
(i) If the initial time t, (at which the flux is zero) is not zero and is not 

known precisely, we can write 

6’(Y) = ;(, - to) 

The variable z = c$-‘( y) as a function of time is linear, with a slope 
p = aR-=. Thus, the whole curve can be determined when a part of it is 
known, or even when two points are very well known. 

(ii) The preceding equations have been determined for constant thermal 
parameters. Otherwise an additional term taking into account the variation 
of X with temperature must be added to eqn. (la): 

1 dX aT = -- - 
i i pC dT ax 

As the gradient of temperature is approximately proportional to the heating 
rate, the additional term shown above becomes very small when the heating 
rate is low enough. 

(iii) Of course, the heat flux must be measured around the circular section 
taken at the half height of the cylinder in order to obtain a radial heat 
transfer. 
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